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Abstract

In this paper we describe new multimode net-
work representations for both H- and E-plane
uniform bends in terms of impedance and admit-
tance multimode coupling matrices, respectively.
The key element of the network is the transition
from the straight waveguide to the curved waveg-
uide. The relevant multimode equivalent net-
work representation is obtained following a sim-
ple procedure that has been used already with
success for other types of junctions involving strai
ght waveguides. In the talk, the details of the for-
mulations will be discussed together with com-
parisons between our simulations and available
published data, both measured and theoretical,
indicating very good agreement as well as very
good computational efficiency.

I - Introduction

Uniform bends in rectangular waveguides, like
the ones shown in Fig. 1, are frequently used
components in many microwave subsystems for
both ground and space applications. Their ac-

curate and efficient full-wave characterization is
therefore required for the development of mod-

ern CAD tools to analyze and design complex
waveguide structures. Many contributions can
be found in the technical literature concerning
bends (see {1] to [9] for instance) but no pub-
lications are actually available (to the authors
knowledge) describing multimode equivalent net-
work representations.

In this paper we describe new multimode net-
work representations for both H- and E-plane
uniform bends in terms of impedance and admit-
tance multimode coupling matrices, respectively.
The key element of the network is the transition
from the straight wavegnide to the curved waveg-
uide. The relevant multimode equivalent net-
work representation is obtained following a sim-
ple procedure that has been used already with
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success for other types of junctions involving strai-
ght waveguides. First the theoretical formulation

is discussed in details together with its conver-

gence properties. Next a number of comparisons

are presented between our simulations and data

already available in the technical literature, both

theoretical and measured, indicating that the ap-

proach proposed is at the same time accurate and

computationally very efficient.

II - Theory

The viewpoint chosen to simulate a waveg-
uide bend consists of the cascading of two dis-
continuities through a length L of transmission
line. The discontinuities are the junctions be-
tween straight to curved and curved to straight

waveguide regions, while the the length of trans-
mission line represents the uniform curved region
(see Fig. 2). As a consequence, the first step to-
ward the development of the equivalent network
representation of the structures in Fig. 1, in the
form shown in Fig.2, is the computation of an or-
thonormal set of modes for the curved waveguide
section. To this end, the expansions proposed by
Lewin [4] have been used in order to avoid the
direct use of Bessel functions.

The procedure described in [4] involves the
expansion of the transverse electric and magnetic
fields as an infinite series of standard rectangular

waveguide basis functions ef’, h$), namely (H-

plane bend case)
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where (c) and (s) denote the curved and the
straight waveguide regions, respectively. Fur-
thermore, the appropriate orthogonality condi-
tions, called in the reminder the overlapping in-
tegrals, are
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The series (1) and (2) are then inserted in the
Helmothz equation of the curved region, obtain-
ing an eigenvalue problem solved using a Galerkin
procedure so that the propagation constants and
the coefficients of the series expansion are finally
obtained. A similar procedure was also used suc-
cessfully by Weisshaar [7].

Once the modes of the curved waveguide sec-
tion are obtained, we can proceed with the for-
mulation of the network by following a new sim-
ple method that has been already used to analyze
the junction between arbitrary straight waveg-
uides [10] and [11]. First, we need to define two
reference planes denoted as T and T’, as shown
in Fig. 1. We can then write the mathematical
equivalent of the network representation in Fig.
2 (H-plane bend case) in the form
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where Vi and 189 are the modal voltages
and currents, respectively. According to circuit

theory, the Z,(ff,’;l) element is given by the general

relation
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Eq. (8) can be used to actually evaluate the

Z,(,fj%) elements, resulting in the following simple

expressions:
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where K is the maximum number of modes
summed in the series (3) and (4) . The deriva-

tion yielding the above expressions will be dis-
cussed in details during the talk and is not in-
cluded here for the sake of space. What is im-
portant to note, however, is that the overlapping
integrals involved in the process to obtain the
elements of the impedance (admittance) matrix
are not frequency-dependent, and that only the

(e,

m,n

The above impedance matrix describes a sin-
gle straight to curved junctions. More compli-
cated structures can now be easily analyzed by
connecting several equivalent network represen-
tations through appropiate transmission line leng-
ths. At the end of the cascading process, only
one banded linear system has to be inverted. re-
e»lting in a very fast code implementation. The
process to analyze a E-plane bend involves the
same steps, but the equivalent network represen-

tation is formulated instead in terms of admit-
tance matrices.

elements involve a summation.

IIT - Numerical and experimental results

For the sake of space, only results for a H-
plane bends are presented here (more examples
will be presented in the talk). Fig. 3 shows the

convergence of the Z,%jfi) element as function of
the number of terms to describe each mode. Only
10 expansion terms are enough to obtain good
convergence. In Fig. 4 the convergence of the
magnitude of the reflection coefficient with the
number of modes in the global network is ana-
lyzed, showing that typically only 4 or 5 modes
are required. In order to validate the computa-
tional method presented here, we next compare
our results with the theoretical results presented
by Weisshaar [7] in Fig. 5. As we can see, a
very good agreement is observed. Computation
time for a typical analysis (with 5 modes in the
network and 10 terms to describe each mode of
the curved region) with 50 points in frequency

takes 2 seconds on a IBM RISK-6000 worksta-
tion. Finally, as a further verification, we present



a comparison between measured results (curtesy
of Radiacion y Microondas, S.A.) and our simu-
lations in Fig. 6. Also in this case, the agreement
is very good thereby further validating the pre-
sented model.

IV - Conclusions

A new multimode equivalent network repre-
sentation for the analysis of uniform H- and E-
plane bends in rectangular waveguide has been
presented. The junction between straight and
curved waveguide regions, which is the key ele-
ment of the structure, is analyzed in terms of a
multimode equivalent network representation in-
volving impedance or admittance coupling ma-
trix for II- and E-plane bends, respectively. The
convergence of the network representation has
been analyzed as function of several parameters
showing very good behaviour. Comparison with
theoretical and experimental results fully vali-
date the method presented.
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Iig. 1 Uniform H- and E-plane bends in rectangular waveguide analyzed in this paper.
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}“lg. 2 Multimode equivalent network for H-plane bend.
The Z(s:¢) (Z(¢:5}) impedance matrix repre-
sents the junction straight and curved (curved
and straight) waveguide regions.
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F 1g. 4 Convergency of the magnitude of the reflec-
tion coeflicient versus the number of modes in-
cluded in the final network. 90° H-plane bend
in WR-75 waveguide. Radius=21.6 mm. 10 ex-
pansion basis have been used to describe each
0 mode.
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Fig. 6 Comparison of the measured data with our
approach. 90° H-plane bend in WR-T5 waveg-
uvide. Radius=21.6 mm. 5 modes have been
included in the network. (a) Magnitude of the
reflection coefficient, (b) Phase of the transmis-
sion coefficient.
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Flg. 3 Convergency of the Z,(,f:fl) element as function
of the number of expansion basis used to de-
scribe each curved region mode. WR-75 waveg-
uide. Radius=21.6 mm, Frequency=14 GHz.
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Fig. 5 Comparison of the results presented in [7]
with our method. Cascaded 30° H-plane bends
through a straight transmission line of length
L. WR-90 waveguide. Radius=15.24 mm. U-
configuration. 5 modes have been included in
the network.
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